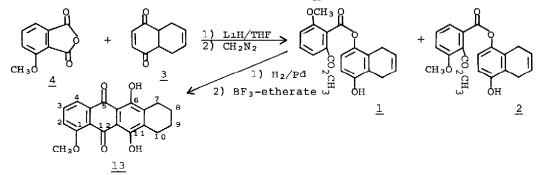
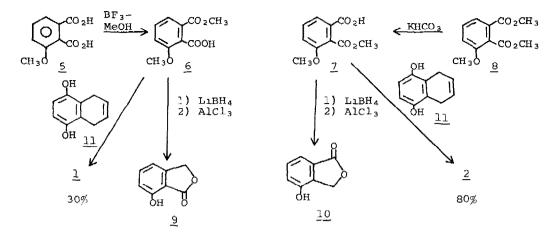
A NOVEL ROUTE TO THE TETRACYCLIC RING OF ANTHRACYCLINONES


Daniel G. Miller, Steven Trenbeath and Charles J. Sih* School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53706

(Received in USA 9 February 1976; received in UK for publication 5 April.1976)

Recent reports on the effectiveness of Daunorubicin¹ and Adriamycin² for the treatment of a variety of human cancers has aroused considerable interest in the total synthesis of this group of anthracycline compounds. The anthracycline antibiotics³, metabolites of <u>Streptomyces sp</u>., are made up of anthracyclinones⁴ (the aglycone molety) attached to aminosugars. Although a total synthesis of adriamycin has already been formally achieved^{5,6,7,8}, the need for an efficient regiospecific route to daunomycinone and adriamycinone persists, to furnish an alternative method possibly competitive with the biosynthetic process⁹ for the preparation of these antitumor anthracyclines.


Several syntheses of tetracyclic hydroquinone systems have been accomplished starting with a Friedel-Craft reaction^{10,11}, a photo-Fries reaction¹², and a Diels-Alder reaction^{13,14}. As part of the program directed to the total synthesis of daunomycinone and adriamycinone, we have developed a facile method for the construction of the tetracyclic hydroquinone ring system, featuring an efficient one-step cyclization of the tetrahydronaphthyl esters of 3-methoxyphthalic acid.

1,4,5,8,9,10-<u>cis</u>-Hexahydronaphthalene-1,4-dione $(\underline{3})^{15}$, the well known Diels-Alder adduct derived from p-benzoquinone and 1,3-butadiene was treated with two equivalents of lithium hydride to generate the dilithiophenolate of 1,4-dihydroxy-5,8-dihydronaphthalene, which was reacted with 3-methoxyphthalic anhydride¹⁶ (<u>4</u>). After the products were methylated with diazomethane 4'hydroxy-5',8'-dihydronaphthyl-2-methoxy-6-carbomethoxybenzoate¹⁷, <u>1</u>, m.p. 188.5-189^o C, m/e 354 (M⁺), 323 (M-31), 193 (M-C₁₀H₉O₂); pmr^{17} : §8.00 (s, 1, phenolic OH), 7.8-7.2 (m, 3, aromatic H), 7.15, 6.77 (AB, q, 2, J = 6 Hz, aromatic H), 5.90 (broad s, 2), 3.92 (s, 6, OCH₃) and 3.33 ppm (broad s, 4, benzylic H); uv_{max} (CH₃OH) 285 nm (€3,600), 298 (€4,600), and 4'-hydroxy-5',8'-dihydro naphthyl-2-carbomethoxy-3-methoxybenzoate, $\underline{2}$, m.p. 175.5-176° C; m/e 354 (M⁺), 323 (M-31), 143 (M-C₁₀H₉O₂); Pmr: **S**8.75 (s, 1, phenolic OH), 7.8, 7.5, 7.23 (AMX³, J = 5.0, 5.5 Hz aromatic H), 6.75 (s, 2H), 5.83 (broad s, 2H), 3.89 (s, 3H), 3.83 (s, 3H) and 3.22 ppm (broad s, 4, benzylic H); uv_{max} (CH₃OH) 283 nm (€3,800), 302 (€4,300) were obtained in a ratio of 95:5 (57%), indicating that the reaction proceeded with considerable regioselectivity as the phenolate attacked predominantly the more hindered carbonyl of <u>4</u>.

To establish the identity of the isomeric esters <u>1</u> and <u>2</u>, we conducted the following series of experiments. Refluxing of <u>5</u> with BF₃-methanol in methanol for 5 hours afforded 2-methoxy-6-carbomethoxybenzoic acid, <u>6</u>, m.p. 151.5-153.5° in 82% yield 2-Carbomethoxy-3-methoxybenzoic acid, <u>7</u>¹⁸, m.p. 141.5-143° was obtained in 80% by hydrolysis of <u>8</u> with one equivalent of KHCO₃ in refluxing ethanol. Reduction of <u>6</u> with LiBH₄ afforded 7-methoxyphthalide, m.p. 105-108° (lit.¹⁹ 107-109°), which was demethylated using AlCl₃ to yield 7-hydroxyphthalide, <u>9</u>, m.p. 134-136° (lit. 134-136°¹⁹, 135-136.5°²⁰). Similarly, LiBH₄ reduction of <u>7</u> gave 4-methoxyphthalide, m.p. 126-128° (lit.^{21,22} 127°), which upon AlCl₃ treatment yielded 4-hydroxyphthalide, <u>10</u>, m.p. 257-258° dec. (lit.^{21,22,23} 254-260° dec.). Having affirmed the structures of <u>6</u> and <u>7</u>, it was possible to correlate them with <u>1</u> and <u>2</u> respectively by their reaction with 1,4-dihydroxy-5,8-dihydronaphthalene, <u>11</u>, following the procedure of Brewster-Ciotti²⁴.

Hydrogenation of <u>1</u> over Pd/C afforded 4'-hydroxy-5',6',7',8'-tetrahydronaphthyl-2-methoxy-6-carbomethoxy-benzoate, <u>12</u>, m.p. 163-166⁰; Pmr: **8**7.66 (d of d, 1H, $J_1 = 7.8$ Hz, $J_2 = 1.2$ Hz), 7.45 (d of d, 1H, $J_1 = J_2 = 7.8$ Hz), 7.16 (d of d, 1H, $J_1 = 7.8$ Hz, $J_2 = 1.2$ Hz), 7.20 (d, 1H, J = 8.5 Hz), 6.6 (d, 1H, J =8.5 Hz), 5.08 (s, 1H), 3.91 (s, 3H), 3.88 (s, 3H), 2.5-2.9 (m, 4H),

1.65-1.95 ppm (m, 4H). When <u>ll</u> was treated with BF_3 -etherate at elevated temperature (90°, 1 hr) it underwent an apparent Fries rearrangement and subsequent dehydrative cyclization to give 1-methoxy-6,ll-dihydroxy-7,8,9,l0-tetrahydronaphthacene-5,l2-dione, <u>l3</u> in 60-80% yield, m.p. 234-235°; Pmr: **S**13.83 (s, 1H), 13.43 (s, 1H), 7.98 (d of d, 1H, $J_1 = 8.0$ Hz, $J_2 = 1.2$ Hz), 7.70 (d of d, 1H, $J_1 = J_2 = 1.2$ Hz), 4.05 (s, 3H), 2.73 (m, 4H) and 1.80 ppm (m, 4H); uv_{max} (CHCl₃) 537 nm (€8,800), 501 (€13,400), 475 (€11,200), 370 (€3,700) and 292 (€9,000).

The mechanism and regioselectivity of this cyclization reaction and its application to the synthesis of adriamycinone is currently under investigation.

Acknowledgment

Financial support from National Institutes of Health Grant No. AI-11232 and AM 4874 is acknowledged. DGM was an AFPE Fellow, 1973-1975.

References and Notes

- J. Bernard, R. Paul, M. Boiron, C. Jacquillat and R. Maral, Ed., "Rubidomycin", Springer-Verlag, New York, N.Y., 1969.
- 2. R. H. Blum and S. K Carter, Ann. Intern. Med., 80, 249(1974).
- W. B. Turner, "Fungal Metabolites", Academic Press, New York, N.Y., 1971, p. 190.
- 4. W. D. Ollis and I. O. Sutherland, "Recent Developments in the Chemistry of Natural Phenolic Compounds", Pergamon, London, 1961, p. 212.
- 5. C. M. Wong, R. Schwenk, D. Popien and T. L. Ho, <u>Can. J. Chem.</u>, <u>51</u>, 466 (1973).

- 6. J. P. Marsh, C. W. Masher, E. M. Acton and L. Goodman, <u>Chem. Commun.</u>, <u>19</u>, 973 (1967).
- 7. E. M. Acton, A. N. Fujiwara and D. W. Henry, J. Med. Chem., 17, 659(1974).
- F. Arcamone, W. Barbieri, G. Franceschi and S. Penco, <u>Chim</u>. <u>Ind</u>. (Milan), <u>51</u>, 834 (1969).
- F. Arcamone, G. Cassinelli, G. Fantini, A. Grein, P. Orezzi, C. Poh and C. Spalla, <u>Biotech. and Bioeng.</u>, <u>11</u>, 1101 (1969).
- C. M. Wong, D Popien, R. Schwenk and J. TeRaa, <u>Can. J. Chem.</u>, <u>49</u>, 2712 (1971).
- 11. W. Trueb and C. H. Engster, <u>Helv. Chim. Acta</u>, 55, 969(1972).
- A. S. Kende, J. Belletire, T. J. Bentley, E. Hume and J. Airey, <u>J. Amer.</u> Chem. Soc., <u>97</u>, 4425(1975).
- 13. F. Farina and J. C. Vega, Tetrahedron Lett., 1655(1972).
- 14. R. Winkler, Chimia, 20, 122(1966).
- E. E. Van Tamelin, M. Shamma, A. W. Burgstahler, J. Wolinsky, R. Tamm and P. E. Aldrich, J. <u>Amer. Chem. Soc.</u>, <u>91</u>, 7315(1969).
- 16. J. Gisvold, J. Am. Pharm. Assn., 31, 202(1942).
- 17. Pmr were recorded on a 60 Mc Varian spectrometer in CDCl₃ with TMS as internal standard. Spectral data were in complete agreement with assigned structures. Satisfactory C, H analyses were obtained for all the new compounds reported herein.
- A. Asano, Ber., 63, 429, 434 (1930).
- 19. J. Blair, J. J. Brown and G. T. Newbold, J. Chem. Soc., 708(1955).
- E. L. Eliel, D. E. Rivard and A. W. Burgstahler, <u>J. Org. Chem.</u>, <u>18</u>, 1679 (1953).
- 21. C. A. Buehler, T. A. Powers and J. G. Michels, <u>J. Amer. Chem. Soc.</u>, <u>66</u>, 417 (1944).
- 22. L. A. Duncanson, J. F. Grove and J. Zealley, J. Chem. Soc., 1331 (1953)
- C. A. Buehler, J. O. Harris, C. Shacklett and B. P. Block, <u>J. Amer. Chem.</u> <u>Soc.</u>, <u>68</u>, 574(1946).
- 24. J. H. Brewster and C. J. Ciotti, J. Amer. Chem. Soc., 72, 6214 (1955).